A novel way to estimate expectation values on quantum computers

Estimation of expectation values is a key ingredient in variational quantum algorithms [1], regarded as promising candidates for industrial applications of near-term quantum computers. A challenge in the standard ways of expectation value estimation is the necessity to repeat measurement many times to suppress statistical fluctuation, especially in the application…

Learning wavefunctions of molecules in quantum chemistry

Introduction: the advent of quantum computers and machine learning

For some problems in physical science, we need to take care of quantum information to compute or simulate target physics because it is described by quantum mechanics. In most cases, however, it is hard to handle such quantum information on classical

Calculating transition amplitudes of Azobenzene isomers using Honeywell System Model HØ

Figure 1. A photograph of Honeywell’s trapped-ion based quantum computing system. [source]

In June 2020, Honeywell became the first to commercially offer a quantum computer achieving a Quantum Volume of 64, with the launch of their System Model HØ. Following Honeywell’s announcement, we at QunaSys started thinking about what we could do with the world’s most powerful quantum computer?

In cooperation with…

QunaSys Tech Blog

Blogs about quantum algorithm developments written by a bunch of quantum native people. Follow to catch up with the most recent quantum news.

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store